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Hutter Prize is the only ongoing data compression competition with a cash prize: it awards 500
euros for each 1% improvement (with 50,000 euros total funding)[1] in the compressed size of
the  file  enwik8,  which  is  the  first  100  million  characters  of  a  specific  version  of  English
Wikipedia.

We suggest  that  one of  the most  important  observations,  possibly  the most  important  one,
revealed  by  the  Hutter  Prize  winning  entries  and  the  associated  work,  is  that  descriptive
complexity levels are as numerous and well  visible in artificial  systems as they are in the
physical world.

In the physical world, hadrons are composed of quarks, then atoms are composed of hadrons,
molecules are composed of atoms, then the cells of living entities, multicellular organisms, and
so on. On each new level the instances have a higher descriptive complexity, on average, than
instances on the previous level.

In a data compression scenario such that an improvement in compressed size is desired at
(almost) any cost, it seems natural to apply a bitwise algorithm, like [2] and [3], an algorithm
that calculates for each bit the probability that this bit is one, making use of all of the already
processed bits of input. If input is big enough, then if we plot the compressed size as a function
of  computational resources (memory and CPU time) used by our bitwise algorithm, the plot
looks somewhat similar to the plots of functions y = Const + 1/x and y = C + 1/log(x).

  
Every doubling of x, the available resources, improves compressed size  y by a smaller and
smaller amount.    y = C1 + z1(x) where z1(x) converges to zero when x runs to infinity.



It can easily be discovered that in the input, bits are the building blocks of units, most often
fixed-size units: symbols in case of qualitative data, samples or numbers in case of quantitative
data. If input is enwik8, symbols are more often 8-bit, less often 16-bit symbols. If input, another
example, is raw (uncompressed) audio, units are 16-bit samples, as a rule.
After we apply the knowledge of peculiarities of the symbolic system(s) used in our input, and
plot  the  computational  resources versus  compressed size for  the  improved compression
algorithm, we see again something similar to y = C2 + z2(x), but this time the constant appears
to be smaller, C2 < C1.

Next, we can discover what is composed of symbols. In case of English text, as in enwik8, the
units  on  the  next  complexity  level  are  English  words.  After  we  apply  this  knowledge,  for
example, build a dictionary of English words and transform the input accordingly, the new plot of
the improved compression algorithm looks like y = C3 + z3(x), and C3 < C2. Here is another
example:  in  case  of  executable  CPU  code,  the  analogues  of  UTF-16  symbols  are  the
elementary CPU instructions, and analogues of English words are the typical sequences of CPU
instructions,  for  example:  a  comparison  followed  by  a  conditional  jump,  calculation  of  the
maximum of two values, pushing a set of registers into stack, a dot product of two vectors.

Next, we can discover what is composed of typical sequences of symbols, which are English
words in case the input contains mostly English text, as in enwik8.
Sentences of English words are the next complexity level. And after we discover and make use
of the rules behind sentences, including parts of speech and punctuation rules, the plot is like
y = C4 + z4(x) where C4 < C3. In case of CPU code, there are also certain rules for what is
possible  and  what  is  not,  what  is  more  likely  and  what  is  unlikely  in  the  input  when  it  is
executable CPU code. For example, “words” like “push many registers into stack” are likely at
the headers  of  functions,  and “words”  like  “pop  many registers  from stack”  at  the  function
footers.

In enwik8 there are two more complexity levels: paragraphs, and then the complete Wikipedia
articles, also known as Wikipedia pages. Paragraphs composed of English language sentences
are on the same complexity level as other Wikipedia specific entities, for example, lists “See
also”,  “References”, and “Other languages”.  Here you could possibly discover that switching
individual models on and off, depending on the types of paragraphs, could be very beneficial for
the compression algorithm, for arriving to y = C5 + z5(x) such that C5 < C4. A set of models for
URIs should be rather different than a set of models for sequences of English sentences.

Finally,  Wikipedia  articles are at  the top of  the stack of  complexity  levels  in  enwik8.  If  you
discover and make use of rules on how the articles are composed, once again you get a plot
like  y = C6 + z6(x) and C6 < C5. For example, every Wikipedia article has a header and a
footer. Also, you could try to group similar articles together: “Persons” and “Places” articles, for
example.



Do C1, C2, …, C6 correspond to descriptive complexity, also known as Kolmogorov complexity?
The Kolmogorov  complexity  of  an object  is  defined as the length  of  the  shortest  computer
program, in a predetermined programming language, that produces the object as output. It is
important that if the programming language is as simple as a CPU instruction set, that’s one
case, if it contains knowledge  of the symbolic system properties (e.g. UTF-16), that’s another
case, and if it contains also the knowledge of how thousands of English words are composed of
UTF-16 symbols, that’s a third case. Descriptive complexity of input E decreases if complexity of
the  programming  language  increases,  and  if  information  inserted  into  the  programming
language is relevant to information in E. When using the definition of Kolmogorov complexity,
we should take into account the complexity of programming language. So the answer is yes,
C1…C6 may be close to descriptive complexities, if  the sizes of decompression programs
are  taken  into  account.  Note  these  sizes  must  somehow take  into  account  the  complexity
hidden in hardware, including CPU, in standard libraries of the programming language, and in
the operating system.
 
It is worth mentioning that the original bitwise compression algorithm, after all the complexity
levels  are taken into account,  is “aware” of entities at  different  levels,  and does not  always
predict  a  bit  at  a  time  (by  the  way,  not  necessarily  the  immediately  next  bit).  When  it  is
appropriate, it predicts a complete symbol, or even a complete word, and possibly a complete
sentence, or at least something about the type of sentence. This allows shifting the y=f(x) curve
closer to the x=0 axis,  which works very similarly to shifting it  closer to the y=0 axis,  if  the
function f(x) looks like C + z(x).

Another issue worth mentioning briefly is that a very straightforward (and very slow) bitwise
compression  algorithm,  for  example  multi-level  artificial  neural  network,  could  eventually
discover all the rules “naturally”, especially if there are approximately as many ANN levels as
the number of complexity levels in the input, and more neural cells than rules, on each level.
However,  applying  the  most  important  rules  “manually”  seems  to  push  the  f(x)  graph
significantly closer to the x=0 axis. This should improve as the state of ANN art improves, and
the top-level ANN supervisor algorithm is able to switch between architectures, turn on and off
stacks of levels, dynamically re-adjust the number of cells on each level, reconsider the batch
sizes, and so on.

A truly  universal  lossless data  compression algorithm targeting a  higher  compression
quality should discover homogeneous portions and all the complexity levels in each portion,
before building and applying a complex model, a model that should take into consideration all of
the complexity levels, and other discovered properties, including data dimensionality, references
to standard symbolic systems, etc. 
Note in general it is important to split input into homogeneous portions; consider this example:
executable machine code intermixed with plain English text and with raw audio data.
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